Biophysical models of fMRI responses.

نویسندگان

  • Klaas E Stephan
  • Lee M Harrison
  • Will D Penny
  • Karl J Friston
چکیده

Functional magnetic resonance imaging (fMRI) is used to investigate where the neural implementation of specific cognitive processes occurs. The standard approach uses linear convolution models that relate experimentally designed inputs, through a haemodynamic response function, to observed blood oxygen level dependent (BOLD) signals. Such models are, however, blind to the causal mechanisms that underlie observed BOLD responses. Recent developments have focused on how BOLD responses are generated and include biophysical input-state-output models with neural and haemodynamic state equations and models of functional integration that explain local dynamics through interactions with remote areas. Forward models with parameters at the neural level, such as dynamic causal modelling, combine both approaches, modelling the whole causal chain from external stimuli, via induced neural dynamics, to observed BOLD responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined MEG and fMRI model

An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...

متن کامل

Physiologically informed dynamic causal modeling of fMRI data

The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative mode...

متن کامل

Fast fMRI can detect oscillatory neural activity in humans.

Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activit...

متن کامل

P115: A Novel High Tech Approach to Monitor the Pharmacotherapy of Alzheimer; a Narrative Review

Alzheimer's disease (AD) is multisystem and multifactor disease with a long no-symptom stage. We propose that a more effective approach to use fMRI as a still emerging, repeatable, non- invasive neuroimaging tools that can be very useful for evaluating, diagnosis, treatment and drugs- development. We studied 30 articles which published between 2008-2017 that included the effects of different bi...

متن کامل

Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation

Dynamic Causal Modelling (DCM) has been proposed to estimate neuronal connectivity from functional magnetic resonance imaging (fMRI) using a biophysical model that links synaptic activity to hemodynamic processes. However, it is well known that fMRI is sensitive not only to neuronal activity, but also to many other psychophysiological responses which may be task-related, such as changes in card...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2004